C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Banach Algebras

Subject Code: 5SC0	4BAE1	Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 18/04/2017	Time: 10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions (07)a. Define: Topological zero divisor. (01) **b.** Define: Radical of an algebra. (01) **c.** Define: Semi simple algebra. (01) **d.** If *I* is a proper left ideal in algebra *A* then prove that \overline{I} is a left ideal in *A*. (02)e. Define: Weak* topology. (02)Q-2 **Attempt all questions** (14)Let $C'[a, b] = \{f \in C[a, b] | f' \text{ exists } \& \text{ it is continuous on } [a, b] \}$ with a) (07) pointwise operations. Show that C'[a, b] is commutative Banach algebra with identity where $||f||_1 = ||f||_{\infty} + ||f'||_{\infty}$. Let A be Banach algebra with identity and G be the set of all regular in element in b) (07) A. Let $x \in A$ with ||e - x|| < 1 then prove that (i) $x \in G$ and $x^{-1} = \sum_{n=0}^{\infty} (e - x)^n$ (ii) G is open in A. OR 0-2 **Attempt all questions** (14)Let A be algebra without identity and $A_e = \{(x, a) \mid x \in A, a \in \mathbb{C}\}$. (07) a) Define (x, a) + (y, b) = (x + y, a + b) $\lambda(x,a) = (\lambda x, \lambda a)$ (x,a) (y,b) = (xy + ay + bx, ab)||(x, a)|| = ||x|| + |a|Then prove that A_e is an algebra with identity. Also if A is complete then prove that A_e is complete. Let *A* be a Banach algebra with identity and $x \in A$. Then prove that (07) b) $r(x) = \lim_{n \to \infty} \|x^n\|^{1/n}$.

Page **1** || **2**

Q-3			Attempt all questions	(14)
	a)		Let <i>A</i> be a Banach algebra with identity. In usual notation prove that (i) $Z \subset S$. (ii) $hd S \subset Z$	(07)
	b)		Let A be a Banach algebra with identity over \mathbb{C} . Then prove that $A \cong \mathbb{C}$ in each of the following cases	(07)
			(i) Zero is the only topological divisor for A. (ii) there exists $M > 0$ such that $ xy \ge M x y \forall x, y \in A$. OR	
0-3			Attempt all questions	(14)
•	a)		Let A be a Banach algebra with identity then prove that $\sigma(x) \neq \emptyset$.	(06)
	b)		State and prove Gal'fand – Mazur theorem.	(04)
	c)		Let <i>B</i> be Banach sub algebra of a Banach algebra <i>A</i> and $x \in B$ then prove that $hd \sigma_{P}(x) \subset hd \sigma_{A}(x)$	(04)
			$\mathbf{SECTION} - \mathbf{II}$	
0-4			Attempt the Following questions	(07)
τ.		a.	Define: Gelfand topology.	(02)
		b.	Define: Involution	(02)
		c.	Define: Banach * algebra.	(01)
		d.	Define: C* algebra.	(01)
		e.	Every C* algebra is B* algebra. True or False.	(01)
Q-5			Attempt all questions	(14)
	a)		Prove that $A \mid R$ is semi simple Banach algebra if A is semi simple Banach algebra and R is closed two sided ideal in A .	(07)
	b)		Let <i>A</i> be Banach algebra with identity. Prove that every ideal contained in a maximal ideal in <i>A</i> .	(07)
			OR	
Q-5			Attempt all questions	(14)
	a)		Let A be Banach algebra with identity. Prove that $P_{1} = \{x_{1}, x_{2}, \dots, x_{n}\}$	(07)
	b)		Rule $(A) = \{r \in A \mid e - xr \text{ is regular } \forall x \in A\}.$	(07)
	U)		complex homomorphism $\Delta(A)$ and the collection of all maximal ideal in A where A is commutative Banach algebra.	(07)
Q-6			Attempt all questions	(14)
	a)		State and prove Gelfand Naimark theorem.	(10)
	b)		Let <i>A</i> be a <i>B</i> [*] algebra and $x \in A$ be normal then prove that $ x^2 = x ^2$.	(04)
0 (OR	
Q-6	- `		Attempt all questions	(14)
	a) b)		State and prove Banach – Stone theorem. Let X be a compact T_2 space. Then prove that the maximal ideal space of $C(X)$ is homeomorphic to X.	(07) (07)

